Matemáticas, pregunta formulada por Matiasvillanofavorit, hace 11 meses

A veces no entiendo y quiero saber que son las raíces cuadradas me pueden explicar?

Respuestas a la pregunta

Contestado por titojair52
1

Respuesta:

yo te explico si quieres ?


titojair52: porque cuando te piden raiz cuadradadeun número siempre tiene que salirte esenumero multiplicando las veces que te pide
titojair52: osea 10 ×10= 100
titojair52: y también hay más raizescomo de raíz cubica de 27 allí te pide atar un número multiplicando 3 veces
titojair52: que te salga 27
titojair52: y ese número sería 3 ×3 ×3 =27
titojair52: entiendes?
Matiasvillanofavorit: gracias por tu ayuda bueno ese ejemplo me sirvió :D bueno cuídate :v
titojair52: corazón corazón :v
titojair52: corazon
titojair52: corazón
Contestado por marianellherrera3243
0

pues bueno la raiz cuadrada .En las matemáticas, la raíz cuadrada de un número {\displaystyle x}x es aquel número {\displaystyle y}y que al ser multiplicado por sí mismo da como resultado el valor {\displaystyle x}x, es decir, cumple la ecuación {\displaystyle y^{2}=x}{\displaystyle y^{2}=x}.1​

Se corresponde con la radicación de índice 2 o, equivalentemente, con la potenciación de exponente 1/2. Cualquier número real no negativo {\displaystyle x}x tiene una única raíz cuadrada positiva o raíz cuadrada principal2​ y denotada como {\displaystyle {\sqrt {x}}}{\sqrt  {x}} donde {\displaystyle {\sqrt {\;}}}{\displaystyle {\sqrt {\;}}} es el símbolo raíz y {\displaystyle x}x es el radicando. Cuando se requiere denotar dos raíces cuadradas una negativa, {\displaystyle -{\sqrt {x}}}{\displaystyle -{\sqrt {x}}}, y otra positiva, {\displaystyle {\sqrt {x}}}{\sqrt  {x}}, suelen denotarse cuidadosamente como {\displaystyle \pm {\sqrt {x}}}{\displaystyle \pm {\sqrt {x}}} o bien como {\displaystyle \mp {\sqrt {x}}}{\displaystyle \mp {\sqrt {x}}} según el orden necesitado.

El concepto puede extenderse a cualquier anillo algebraico, así es posible definir la raíz cuadrada de un número real negativo o la raíz cuadrada de algunas matrices. En los números cuaterniónicos, los números reales negativos admiten un número infinito de raíces cuadradas, sin embargo el resto de cuaterniones diferentes de cero admiten solo dos raíces cuadradas. En el anillo no conmutativo de las funciones reales de variable real con la adición y la composición de funciones si fºf = g, se puede plantear que f es la "raíz cuadrada" de g.3


titojair52: quien no copiar y pagar :v
Matiasvillanofavorit: xD
Otras preguntas