A) Juan is sitting on the edge of a platform that rotates at a rate of 20 revolutions per minute. The platform has a 4.5m radius. What is the linear speed in which Juan moves? What is the moon's period?
Respuestas a la pregunta
Contestado por
1
Respuesta:
First of all, Juan's angular velocity must be expressed in SI units:
20\frac{\cancel{rev}}{\cancel{min}}\cdot \frac{2\pi\ rad}{1\ \cancel{rev}}\cdot \frac{1\ \cancel{min}} {60\ s} = \frac{2\pi}{3}\frac{rad}{s} = 2.1\ s^{-1}
a) Juan's speed can be expressed as the product of the angular speed by the radius:
v = \omega\cdot R = 2.1\ s^{-1}\cdot 4.5\ m = \fbox{\color{red}{\bm{9.45\ \frac{m}{s}}}}b) The period of its motion is:
\omega = \frac{2\pi}{T}\ \to\ T = \frac{\cancel{2\pi}\ \cancel{rad}}{\frac{\cancel{2\pi}}{3 }\frac{\cancel{rad}}{s}} = \fbox{\color{red}{\bm{3\ s}}}
Explicación:
Otras preguntas
Historia,
hace 2 meses
Matemáticas,
hace 2 meses
Derecho ,
hace 2 meses
Química,
hace 2 meses
Matemáticas,
hace 2 meses
Historia,
hace 9 meses
Inglés,
hace 9 meses