Matemáticas, pregunta formulada por Katisisima, hace 1 año

a) determine la pendiente de la recta que pasa por dos puntos 
a)(-3,2) y (-3,7)
b)encuentre la ecuacion de las lineas  rectas que satisfacen las condiciones dadas 
a)pasa po el punto(3,4) y tiene pendiente 0
b)pasa por el punto (3,4)  no tiene pendiente
c)pasa por (3,4) y es perpendicular ala recta 2x-3y+4=0 con su procedimiento de cada una por favor

Respuestas a la pregunta

Contestado por omihijo
0
a) recta que pasa por dos puntos (-3,2) y (-3,7)
m= \frac{ y_{2} -y_{1} }{x_{2} -x_{1}} = \frac{7-2}{-3-(-3)} =  \frac{5}{0}. No. tiene. pendiente..   Por lo tanto la recta tiene por ecuación  "x=-3"

b) 
a)pasa po el punto(3,4) y tiene pendiente 0
Al sustituir m=0 en la ecuación 
y-y _{o}=m(x- x_{0})  , resulta en: 
y-4=0(x-3)
y-4=0
y=4

b)pasa por el punto (3,4)  no tiene pendiente
Ecuación "x=3"

c) pasa por (3,4) y es perpendicular ala recta 2x-3y+4=0 con su procedimiento de cada una por favor
Primero se determina la pendiente de la recta 2x-3y+4=0. sabiendo que 
m_1=- \frac{A}{B} =- \frac{-3}{2} =\frac{3}{2} . La pendiente de nuestra recta buscada es  m_{2} = \frac{1}{ m_{1} } = \frac{1}{ \frac{3}{2} } = \frac{2}{3}

usando y-y _{o}=m(x- x_{0}) y los datos encontrados:
y-4}=\frac{3}{2}(x-3) 

Espero te sea de utilidad, Saludos,




Otras preguntas