Matemáticas, pregunta formulada por kellyhg, hace 1 año

7. Organizados en equipos, analicen la siguiente sucesión de figuras y respondan lo que se cuestiona. Si lo desean pueden utilizar su calculadora.





a) Si la sucesión continúa en la misma forma, ¿cuántos cubos se necesitan para formar la figura 5? ¿Y para la figura 10? ¿Y para la figura 100?

b) ¿Cuál es la expresión algebraica que permite conocer el número de cubos de cualquier figura que esté en la sucesión?

c) Se sabe que una de las figuras que forman la sucesión tiene 2 704 cubos, ¿qué número corresponde a esa figura en la sucesión?

d) Una figura con 2 346 cubos, ¿pertenece a la sucesión? ¿Por qué?

PD: la sucesión viene en el archivo


Adjuntos:

Respuestas a la pregunta

Contestado por sofiada2802
124

Respuesta:

Explicación paso a paso:

Para resolver este problema debemos plantear una sucesión, para ello vamos a observar el comportamiento de la cantidad de cubos, tenemos:

a₁ = 1

a₂ = 4

a₃ = 9

a₄ = 16

Por tanto, la expresión que lleva la siguiente sucesión es la siguiente:

an = n² → Expresión algebraica.

Ahora, procedemos a resolver el problema, tenemos:

a₅ = 5²

a₅ = 25

Por tanto, para la figura 5 se necesitan 25 cubos.

a₁₀ = 10²

a₁₀ = 100

Por tanto, para la figura 10 se necesitan 100 cubos.

a₁₀₀ = 100²

a₁₀₀ = 10000

Por tanto, para la figura 100 se necesitan 10000 cubos.

Entonces, la figura que tiene 2704 cubos será:

2704 = n²

n = √(2704)

n = 52

Por tanto, la figura 52 necesitará un total de 2704 cubos.


Tareasew: Y si la sucesión es 1,3,7,13
Contestado por Rufitibu62
14

Para la sucesión de figuras mostrada, se tiene:

  1. Para formar la figura 5 se necesitan 25 cubos, para la figura 10 se necesitan 100 cubos, y para la figura 100 se necesitan 10000 cubos.
  2. La expresión algebraica que permite conocer el número de cubos de cualquier igura es: Sn = n².
  3. La figura con 2704 cubos corresponde a la figura número 52.
  4. Una figura con 2346 cubos no pertenece a la sucesión, debido a que no cumple con la expresión algebraica de la sucesión.

¿Qué es una Sucesión Numérica?

Se trata de un conjunto de números, ordenados, y que siguen cierto patrón o relación para obtener cada uno de ellos.

Los números que conforman a una sucesión son llamados términos de la sucesión.

Además, la sucesión puede ser representada en forma de expresión algebraica, denominada "Sn", lo que permite hallar cualquier término de la misma.

Según la figura mosrada, se tiene:

  • Figura 1 (n = 1): 1 cubo.
  • Figura 2 (n = 2): 4 cubos.
  • Figura 3 (n = 3): 9 cubos.
  • Figura 4 (n = 4): 16 cubos.

"n" representa la posición que ocupa el término dentro de la sucesión.

Se puede apreciar que existe una relación numérica para cada uno de los términos.

  • n = 1: 1 cubo = .
  • n = 2: 4 cubos = .
  • n = 3: 9 cubos = .
  • n = 4: 16 cubos = .

Por lo tanto, para cualquier término, se puede escribir: Sn = n².

Con esta expresión se puede determinar la cantidad de cubos de cualquiera de las figuras de la sucesión.

  • ¿Cuántos cubos se necesitan para formar la figura 5?

Para n = 5, se tiene: S₅ = 5² = 25 cubos.

  • ¿Y para la figura 10?

Para n = 10, se tiene: S₁₀ = 10² = 100 cubos.

  • ¿Y para la figura 100?

Para n = 100, se tiene: S₁₀₀ = 100² = 10000 cubos.

  • ¿Cuál es la expresión algebraica que permite conocer el número de cubos de cualquier figura que esté en la sucesión?

La expresión algebraica es Sn = n².

  • Se sabe que una de las figuras que forman la sucesión tiene 2 704 cubos, ¿qué número corresponde a esa figura en la sucesión?

Se utiliza la expresión algebraica de la sucesión:

Sn = n² = 2704

n = √2704

n = 52

2704 cubos corresponden a la figura 52 de la sucesión.

  • Una figura con 2 346 cubos, ¿pertenece a la sucesión? ¿Por qué?

Se utiliza la expresión algebraica de la sucesión:

Sn = n² = 2346

n = √2346

n = 48,44

La figura no pertenece a la sucesión, debido a que no cumple con la expresión general porque los cubos se representan con los números enteros positivos.

Ver más sobre Sucesiones Numéricas en https://brainly.lat/tarea/43708760

Adjuntos:
Otras preguntas