( 6⁸· 6⁰ ) ÷ 6¹⁰
RELGLA DE EXPONENTES
AYUDAAAA
Respuestas a la pregunta
Respuesta:
Introducción
Necesitamos un lenguaje común para comunicar ideas matemáticas clara y eficientemente. La Notación Exponencial es un ejemplo. Fue desarrollada para expresar multiplicaciones repetidas y para hacer más fácil escribir números largos. Por ejemplo, modelos de crecimiento de poblaciones normalmente usan exponentes para manejar y manipular números grandes que cambian rápido con el tiempo.
Para trabajar con exponentes, necesitamos "hablar el lenguaje" y aprender primero algunas reglas.
¿Qué es la Notación Exponencial?
La notación exponencial tiene dos partes. La base, como el nombre lo dice, es el número de abajo. La otra parte de la notación es un número pequeño escrito en el superíndice a la derecha de la base, se llama exponente. Abajo hay algunos ejemplos de la notación exponencial Usaremos estos ejemplos para aprender sobre la notación.
103
251
-34
Empecemos con 103. La base es 10. Esto significa que 10 es un factor, y que va a ser multiplicado por sí mismo cierto número de veces. El número preciso de veces está dado por el exponente, el número en el superíndice. En este caso, el exponente es 3, lo que significa que la base 10 será usada como factor 3 veces. Entonces 103 significa 10 • 10 • 10.
Ahora sabemos lo que significa 103, pero ¿cómo lo pronunciamos? Tenemos muchas opciones: este término podría decirse como "10 elevado a la tercera potencia" o "10 a la tercera, o "10 al cubo." Las palabras "elevado a la potencia" se insertan entre la base y el exponente para indicar la notación exponencial.
Bien. Consideremos 251. ¿Qué significa el exponente 1? Cualquier valor elevado a la potencia de 1 es simplemente el mismo valor. Esto tiene sentido cuando pensamos en ello, porque el exponente 1 significa la base es usada como factor sólo una vez. Entonces la base está sola, y 251 es simplemente 25.
Esto nos deja con el término -34. Este ejemplo es un poco complicado porque hay un signo negativo. Una de las reglas de la notación exponencial es que el exponente se relaciona sólo con el valor inmediato a su izquierda. Entonces, -34 no significa -3 • -3 • -3 • -3. Significa " el opuesto de 34," o — (3 • 3 • 3 • 3). Si quisiéramos que la base fuera -3, tendríamos que usar paréntesis en la notación: (-3)4. ¿Por qué tan exigentes? Bueno, haz las cuentas:
-34 = – (3 • 3 • 3 • 3) = -81
Explicación paso a paso: