Matemáticas, pregunta formulada por esperanzaallisonapaz, hace 1 mes

6 amigos van a un cine y se consiguen con una fila con 6 asientos disponibles. ¿ De cuantas maneras diferentes se pudieron sentar

ayudaa dare coronita

Respuestas a la pregunta

Contestado por Matilala
1

Respuesta:

720 formas

Explicacion:

Este tipo de problemas son las permutaciones, se resuelven con el valor factorial de un numero, en este caso como son 6 amigos se pueden ordenar de 6! formas diferentes

6! = 1 × 2 × 3 × 4 × 5 × 6 = 720


Matilala: mi coronita :DDD
Contestado por id1001265
0

El número de permutaciones o maneras diferentes en las que pueden sentarse los 6 amigos en una fila de 6 sillas es de: 720

Para este resolver este problema la formula y el procedimiento que debemos utilizar de permutación es:

nPr = n! / (n-r)!

Donde:

  • nPr = permutación
  • n = número de objetos total
  • r = número de objetos seleccionados
  • ! = factorial del número

Datos del problema:

  • n = 6 (personas)
  • r = 6 (sillas en una fila)

Aplicamos la fórmula de permutación, sustituimos valores y tenemos que:

nPr= n! / (n-r)!

6P6= 6! /(6-6!)

6P6= 6! / 0!

6P6= 6! / 1

6P10= 6 * 5 * 4 * 3 * 2 * 1/1

6P6= 720

Hay un total de 720 permutaciones posibles

¿Qué es permutación?

Es el arreglo de forma ordenadas de miembros que pertenecen a un conjunto sin repeticiones.

Aprende más sobre permutación en: brainly.lat/tarea/12719169

#SPJ2

Adjuntos:
Otras preguntas