5 cifras enteresantes descubiertas por la cienciacomo por ejemplo, la circunferencia del planeta tierra: 40 075
Respuestas a la pregunta
Contestado por
0
La notación científica es un recurso matemático empleado para simplificar cálculos y representar en forma concisa números muy grandes o muy pequeños. Para hacerlo se usan potencias de diez. Básicamente, la notación científica consiste en representar un número entero o decimal como potencia de diez. En el sistema decimal, cualquier número real puede expresarse mediante la denominada notación científica. Para expresar un número en notación científica identificamos la coma decimal (si la hay) y la desplazamos hacia la izquierda si el número a convertir es mayor que 10, en cambio, si el número es menor que 1 (empieza con cero coma) la desplazamos hacia la derecha tantos lugares como sea necesario para que (en ambos casos) el único dígito que quede a la izquierda de la coma esté entre 1 y 9 y que todos los otros dígitos aparezcan a la derecha de la coma decimal. Es más fácil entender con ejemplos: 732,5051 = 7,325051 • 102 (movimos la coma decimal 2 lugares hacia la izquierda) −0,005612 = −5,612 • 10−3 (movimos la coma decimal 3 lugares hacia la derecha). Nótese que la cantidad de lugares que movimos la coma (ya sea a izquierda o derecha) nos indica el exponente que tendrá la base 10 (si la coma la movemos dos lugares el exponente es 2, si lo hacemos por 3 lugares, el exponente es 3, y así sucesivamente. Nota importante: Siempre que movemos la coma decimal hacia la izquierda el exponente de la potencia de 10 será positivo. Siempre que movemos la coma decimal hacia la derecha el exponente de la potencia de 10 será negativo. Otro ejemplo, representar en notación científica: 7.856,1 1. Se desplaza la coma decimal hacia la izquierda, de tal manera que antes de ella sólo quede un dígito entero diferente de cero (entre 1 y 9), en este caso el 7. 7,8561 La coma se desplazó 3 lugares. 2. El número de cifras desplazada indica el exponente de la potencia de diez; como las cifras desplazadas son 3, la potencia es de 103. 3. El signo del exponente es positivo si la coma decimal se desplaza a la izquierda, y es negativo si se desplaza a la derecha. Recuerda que el signo positivo en el caso de los exponentes no se anota; se sobreentiende. Por lo tanto, la notación científica de la cantidad 7.856,1 es:7,8561 • 103 Operaciones con números en notación científica Multiplicar Para multiplicar se multiplican las expresiones decimales de las notaciones científicas y se aplica producto de potencias para las potencias de base 10.Ejemplo: (5,24 • 106) • (6,3 • 108) = 5,24 • 6,3 • 106 + 8 = 33,012 • 1014 = 3,301215 Veamos el procedimiento en la solución de un problema: Un tren viaja a una velocidad de 26,83 m/s, ¿qué distancia recorrerá en 1.300 s? 1. Convierte las cantidades a notación científica. 26,83 m/s = 2,683 • 101 m/s1.300 s = 1,3 • 103 s 2. La fórmula para calcular la distancia indica una multiplicación: distancia (d) = velocidad (V) x tiempo (t). d = Vt Reemplazamos los valores por los que tenemos en notación científica d = (2,683 • 101 m/s) • (1,3 • 103 s) 3. Se realiza la multiplicación de los valores numéricos de la notación exponencial, (2,683 m/s) x 1,3 s = 3,4879 m. 4. Ahora multiplicamos las potencias de base 10. Cuando se realiza una multiplicación de potencias que tienen igual base (en este caso ambas son base 10) se suman los exponentes. (101) • (103) = 101+3 = 104 5. Del procedimiento anterior se obtiene: 3,4879 • 104 Por lo tanto, la distancia que recorrería el ferrocarril sería de 3,4879 • 104 m La cifra 3,4879 • 10 elevado a 4 es igual a 34.879 metros. Dividir Se dividen las expresiones decimales de las notaciones científicas y se aplica división de potencias para las potencias de 10. Si es necesario, se ajusta luego el resultado como nueva notación científica.Hagamos una división: (5,24 • 107)
(6,3 • 104) = (5,24 ÷ 6,3) • 107−4 = 0,831746 • 103 = 8,31746 • 10−1 • 103 = 8,31746 • 102 Suma y resta Si tenemos una suma o resta (o ambas) con expresiones en notación científica, como en este ejemplo: 5,83 • 109 − 7,5 • 1010 + 6,932 • 1012 = lo primero que debemos hacer es factorizar, usando como factor la más pequeña de las potencias de 10, en este caso el factor será 109 (la potencia más pequeña), y factorizamos: 109 (5,83 − 7,5 • 101 + 6,932 • 103) = 109 (5,83 − 75 + 6932) = 6.862,83 • 109 Arreglamos de nuevo el resultado para ponerlo en notación científica y nos queda: 6,86283 • 1012, si eventualmente queremos redondear el número con solo dos decimales, este quedará 6,86 • 1012. Ver: PSU: Matemática, Pregunta 06 Potenciación Si tenemos alguna notación científica elevada a un exponente, como por ejemplo
(3 • 106)2 ¿qué hacemos? Primero elevamos (potenciamos) el 3, que está al cuadrado (32) y en seguida multiplicamos los exponentes pues la potencia es (106)2, para quedar todo: 9 •
(6,3 • 104) = (5,24 ÷ 6,3) • 107−4 = 0,831746 • 103 = 8,31746 • 10−1 • 103 = 8,31746 • 102 Suma y resta Si tenemos una suma o resta (o ambas) con expresiones en notación científica, como en este ejemplo: 5,83 • 109 − 7,5 • 1010 + 6,932 • 1012 = lo primero que debemos hacer es factorizar, usando como factor la más pequeña de las potencias de 10, en este caso el factor será 109 (la potencia más pequeña), y factorizamos: 109 (5,83 − 7,5 • 101 + 6,932 • 103) = 109 (5,83 − 75 + 6932) = 6.862,83 • 109 Arreglamos de nuevo el resultado para ponerlo en notación científica y nos queda: 6,86283 • 1012, si eventualmente queremos redondear el número con solo dos decimales, este quedará 6,86 • 1012. Ver: PSU: Matemática, Pregunta 06 Potenciación Si tenemos alguna notación científica elevada a un exponente, como por ejemplo
(3 • 106)2 ¿qué hacemos? Primero elevamos (potenciamos) el 3, que está al cuadrado (32) y en seguida multiplicamos los exponentes pues la potencia es (106)2, para quedar todo: 9 •
Otras preguntas
Matemáticas,
hace 7 meses
Matemáticas,
hace 7 meses
Religión,
hace 7 meses
Ciencias Sociales,
hace 1 año
Ciencias Sociales,
hace 1 año
Matemáticas,
hace 1 año
Biología,
hace 1 año