Matemáticas, pregunta formulada por scadillola, hace 6 meses

30,31,34,39;46;55; determinar el término que falta de la sucesión​

Respuestas a la pregunta

Contestado por ainhoa5307
0

Respuesta:

Explicación paso a paso:

Contestado por ct9201639
0

Respuesta:

Si los términos de la sucesión cambian consecutivamente de signo.

 

Si los términos impares son negativos y los pares positivos: Multiplicamos a_{n} por (-1)^{n}.

 

-4,9,-16,25,-36,49,...

 

a_{n}=(-1)^{n}(n+1)^{2}

 

Si los términos impares son positivos y los pares negativos: Multiplicamos a_{n} por (-1)^{n-1}.

 

4,-9,16,-25,36,-49,...

 

a_{n}=(-1)^{n-1}(n+1)^{2}

 

 

5 Si los términos de la sucesión son fraccionarios (no siendo una progresión).

 

Se calcula el término general del numerador y denominador por separado.

 

a_{n}=\cfrac{b_{n}}{c_{n}}

 

\cfrac{2}{4},\cfrac{5}{9},\cfrac{8}{16},\cfrac{11}{25},\cfrac{14}{36},...

 

Tenemos dos sucesiones:

 

2,5,8,11,14,...

4,9,16,25,36,...

 

La primera es una progresión aritmética con d=3, la segunda es una sucesión de cuadrados perfectos

 

a_{n}=\cfrac{3n-1}{(n+1)^{2}}

Otras preguntas