Matemáticas, pregunta formulada por albertperu777, hace 1 año

3.Dar la expresión racionalizada de:
f =   \frac{9}{ \sqrt{3} }

Respuestas a la pregunta

Contestado por Usuario anónimo
6

La expresión racionalizada es 3√3

Para poder determinar este resultado, debemos tener en cuenta un cierto aspecto de las leyes de los exponentes y un truco matemático que facilita todo.

  • Ley de exponentes: la ley que necesitamos es la siguiente a^n a^m = a^{n+m}
  • Truco matemático: El truco que necesitamos es el de saber que siempre estamos multiplicando por 1, y que uno se puede expresar como la división de un número por el mismo, es decir: 1 = a/a; b = b*1 = b*(a/a) = (b*a)/a

Sabiendo estas dos cosas, podemos aplicar lo siguiente

1 = \frac{ \sqrt{3} }{ \sqrt{3} }\\\\ \frac{ 9 }{ \sqrt{3} } = \frac{ 9 }{ \sqrt{3} } \times 1 = \frac{ 9 }{ \sqrt{3} } \times \frac{ \sqrt{3} }{ \sqrt{3} } = \frac{9\sqrt{3}}{ 3^{1/2}\times 3^{1/2} }

Si aplicamos la ley de los exponentes en el denominador, notamos lo siguiente

3^{1/2}\times 3^{1/2} = 3^{1/2+1/2} = 3

Por lo que la expresión queda

(9√3)/(√3*√3) = (9√3)/3 = 3√3

Es decir, la expresión racionalizada es 3√3

Otras preguntas