3. Calcule el perímetro de los siguientes polígonos. No solo escriba el resultado, también debe escribir el proceso A 3.m B.(Tenga presente que esta figura tiene 6 lados) 12m 4 cm 2 cm 3 cm 1 cm 6 cm
Respuestas a la pregunta
Respuesta:
Nosotros sabemos que en Física, se usan números muy grandes y también muy pequeños, y es conveniente
y muy útil expresar estos números como potencia de 10.
Ejemplos:
5348 = 5,348 x 103 0,0005348 = 5,348 x 10-4
0,5348 = 5,348 x 10-2 1 Km = 1000m
534,800.00 = 5,348 x 108 1mm = 10-3 m
Un ejemplo de números pequeños, es la masa de un electrón .... masa del electrón = 9.1 x 10-31 kg. La
multiplicación y la división de las potencias de 10, son simples operaciones elementales.
102 x 103 = 105 = 102+3 102 x 10-5 = 100 = 10-3 = 102 - 5
100,000
Se efectúan sumando o restando los exponentes, respectivamente. Algunas veces, se desea conocer un
valor aproximado y redondeando de longitud física, es decir, conocer su “orden de magnitud”, se define
como la potencia de 10 más cercana a la magnitud.
Explicación paso a paso: 758 = 7.58 x 102 su orden de magnitud es 102
0.0034 = 3.4 x 10-4 su orden de magnitud es 10--4
0.0086 = 8.6 x 10-3 su orden de magnitud es 10-3
Cifras significativas:
Cuando en física se escribe la longitud de una barra y ésta es de 1.26 m, estamos afirmando que estamos
seguros de los dos primeros dígitos, el 1 y el 2; pero que puede haber un error en el último, el 6; podría ser
5 ò 7.
Le daremos el nombre de cifras significativas de una medida al número de dígitos seguros, más el dígito
dudoso. En el ejemplo anterior, tenemos tres cifras significativas.
Si medimos la barra en 1.260 m, es que se tiene duda en el cero; esta medida es de 4 cifras significativas, y
en consecuencia, es más precisa.
Qué sucede cuando se cambian unidades? Supongamos que entre Jalapa y Peñas Blancas hay 368.7 km,
tendremos cuatro cifras significativas. Y ... qué pasa si cambiamos unidades y usamos metros?
Escribiríamos 368.700 metros. Ahora tendríamos 6 cifras significativas y, en consecuencia, obtendríamos
mayor precisión, debido al cambio de unidad. Desde luego que la notación en potencia de 10, nos indica la
forma correcta de escribir un dato experimental; 368.7 = 368.7 x 103 o 3.678 x 106 m.
En la suma o resta de datos experimentales, por ejemplo 62.0 m + 7.45 m = 69.45 m.
Cuando se trata de multiplicaciones y divisiones, conviene escribir los factores en potencia de 10. Ejemplo
:
354.6 m x 24.5 m = 3.456 x 102 x 2.45 x 102 m2 = 3.546 x 2.45 x 103 m2
En el número de menor precisión, un error de una unidad en el último dígito daría un error en el resultado.
Medidas de Longitudes:
Para medidas de longitudes, es indudable que usaremos medidas lineales, graduadas en centímetros o
pulgadas, con sus respectivas divisiones decimales. Las reglas pueden ser metálicas, de madera o de
plástico y para mediciones muy pequeñas y de mayor precisión, usamos un Vernier. El vernier es una
reglita móvil que puede deslizarse a lo largo de una regla dividida en mm. Tiene una longitud de 9 mm,
dividida en 10 partes iguales, de tal manera que cada división valga 9/10 de mm y numerada de 0 a 10.
Si se pone en coincidencia el 0 con el 0` de la reglita, la división 1`, de ésta, está avanzada hacia la
izquierda en 1/10, de mm con respecto a la división de una regla; la división 2`está avanzada en 2/10 de
mm con respecto al 2 de la regla, y la división 10`de la reglita está avanzada en 10/10 de mm; es decir
1mm; coincidirá con la división 9 de la regla.