Matemáticas, pregunta formulada por diegohdzcuevas28, hace 3 meses

15.- ¿Calcular la pendiente ( m ) si: ( y2=20, y1=10, ) ( x2=8, x1=4 )?

Respuestas a la pregunta

Contestado por jazutoala
0

Respuesta:

Escribe de todas las formas posibles la ecuación de la recta que pasa por los puntos A(1, 2) y B(-2, 5).

Solución:

Tenemos que la recta para por los puntos A(1,2) y B(-2,5). Por lo tanto, el vector que une estos dos puntos es:

\overrightarrow{AB}=(-3,3)

Con estos datos ya podemos obtener las ecuaciones de la recta (las fórmulas se pueden consultar en nuestro artículo "Resumen de ecuaciones de la recta").

Ecuación de la recta que pasa por 2 puntos:

\displaystyle \frac{x-1}{-2-1}=\frac{y-2}{5-2}

Ecuación vectorial:

( x,y )=(1,2)+k\cdot (-3,3)

Ecuaciones paramétricas:

\left\{\begin{matrix} x=1-3k\\ y=2+3k \end{matrix}\right

Ecuación continua:

\cfrac{x-1}{-3}=\cfrac{y-2}{3}

Ecuación general:

x+y-3=0

Ecuación explícita:

y=-x+3

Ecuación punto-pendiente:

y-2=-1\cdot (x-1)

Explicación paso a paso:

Contestado por erenizac
0

Explicación paso a paso:

m = (y2 - y1)/((x2 - x1)

m = (20 - 10)/(8 - 4) =

m = 10/4

m = 2,5

Otras preguntas