Matemáticas, pregunta formulada por samuelvejar5918, hace 1 año

13. Se desea construir una caja abierta con volumen mínimo de 450 cm3 tomando una pieza de cartón de 16 cm por 21 cm, cortando cuadrados de lado de longitud “x” cm de cada esquina, y doblando los lados hacia arriba. Encuentre las posibles dimensiones (expresadas en números naturales) de la caja .

Respuestas a la pregunta

Contestado por gedo7
0
Respuesta: 

Para resolver este ejercicio debemos plantear el volumen en función de la longitud "x", por tanto tenemos: 

                                                    V = (16 - 2x)·(21-2x)·x

Resolvemos las operaciones, tenemos: 

                                             V = (336 - 32x- 42x + 4x²)·(x) 

                                                    V = 336x -74x² +4x³

Sabemos que el volumen es igual 450 cm
³

                                                   450 = 336x -74x² +4x³

                                                 0 = 336x -74x² +4x³ -450 

                                                 x₁ = 12.5 , x₂= 3 , x₃ = 3

Debido a que necesitamos un número natural encogemos el x₂ = 3 cm. Por tanto las medidas será: 

Ancho = 21 - 2(3) = 15 cm 
Largo = 16 - 2(3) = 10 cm
Alto = 3 cm 

Obteniendo así las medidas para un volumen mínimo. 

Otras preguntas