10 ejemplos de multiplicación de polinomios
Respuestas a la pregunta
Contestado por
1
Q(x)= 5x elevado a la 3 +9x elevado a la 2 - 13x +25
Q(x)= 9x elevado a la 4 - 2x elevado a la 3 + 25x + 3x elevado a la 2 - 20
P(x)= 5x elevado a la 3 + 9x elevado a la 2 - 13x + 25
Q(x)= 9x elevado a la 4+ 2x elevado a la 3 + 25x - 20
______________________________________
9x elevado a la 4 - 3x elevado a la 3 + 12x - 5
Q(x)= 9x elevado a la 4 - 2x elevado a la 3 + 25x + 3x elevado a la 2 - 20
P(x)= 5x elevado a la 3 + 9x elevado a la 2 - 13x + 25
Q(x)= 9x elevado a la 4+ 2x elevado a la 3 + 25x - 20
______________________________________
9x elevado a la 4 - 3x elevado a la 3 + 12x - 5
Contestado por
6
(a−3)(a + 1) = (a−3)a + (a−3)(1)
= (aa−3a) + (a−3)
= (a2 −3a) + (a−3)
= a2 −3a + a−3
= a2 −2a−3
(5a−7b)(a + 3b) = (5a−7b)a + (5a−7b)(3b)
= (5a2 −7ab) + (15ab−21b2)
= 5a2 −7ab + 15ab−21b2
= 5a2 + 8ab−21b2
(−4y + 5x)(−3x + 2y) = (−4y + 5x)(−3x) + (−4y + 5x)(2y)
= 12xy−15x2 −8y2 + 10xy
= 22xy−15x2 −8y2
(6m−5n)(−n + m) = (6m−5n)(−n) + (6m−5n)(m)
= −6mn + 5n2 + 6m2 −5nm
= 6m2 + 5n2 −11mn
(x2 + xy + y2)(x−y) = (x2 + xy + y2)(x) + (x2 + xy + y2)(−y)
= x3 + x2y + xy2 −x2y−xy2 −y3
= x3 −y3
(m3 −m2 + m−2)(am + a) = (m3 −m2 + m−2)(am) + (m3 −m2 + m−2)(a)
= am4 −am3 + am2 −2am + am3 −am2 + am−2a
= am4 −am−2a
(a2 + a + 1)(a2 −a−1) = (a2 + a + 1)(a2) + (a2 + a + 1)(−a) + (a2 + a + 1)(−1) = a4 + a3 + a2 −a3 −a2 −a−a2 −a−1
= a4 −2a−a2 −1
(2x2 − 3) · (2x3 − 3x2 + 4x) = 4x5 − 6x4 + 8x3 − 6x3+ 9x2 − 12x
= 4x5 − 6x4 + 2x3 + 9x2 − 12x
= (aa−3a) + (a−3)
= (a2 −3a) + (a−3)
= a2 −3a + a−3
= a2 −2a−3
(5a−7b)(a + 3b) = (5a−7b)a + (5a−7b)(3b)
= (5a2 −7ab) + (15ab−21b2)
= 5a2 −7ab + 15ab−21b2
= 5a2 + 8ab−21b2
(−4y + 5x)(−3x + 2y) = (−4y + 5x)(−3x) + (−4y + 5x)(2y)
= 12xy−15x2 −8y2 + 10xy
= 22xy−15x2 −8y2
(6m−5n)(−n + m) = (6m−5n)(−n) + (6m−5n)(m)
= −6mn + 5n2 + 6m2 −5nm
= 6m2 + 5n2 −11mn
(x2 + xy + y2)(x−y) = (x2 + xy + y2)(x) + (x2 + xy + y2)(−y)
= x3 + x2y + xy2 −x2y−xy2 −y3
= x3 −y3
(m3 −m2 + m−2)(am + a) = (m3 −m2 + m−2)(am) + (m3 −m2 + m−2)(a)
= am4 −am3 + am2 −2am + am3 −am2 + am−2a
= am4 −am−2a
(a2 + a + 1)(a2 −a−1) = (a2 + a + 1)(a2) + (a2 + a + 1)(−a) + (a2 + a + 1)(−1) = a4 + a3 + a2 −a3 −a2 −a−a2 −a−1
= a4 −2a−a2 −1
(2x2 − 3) · (2x3 − 3x2 + 4x) = 4x5 − 6x4 + 8x3 − 6x3+ 9x2 − 12x
= 4x5 − 6x4 + 2x3 + 9x2 − 12x
Otras preguntas