1.
La
suma de un número entero positivo y su reciproco es 26/5 .
Halle el número
2 La
suma de un cuadrado de un número y el triplo del mismo número es 10. Hallar el
número.
3.
Hallar
los lados de un triangulo rectángulo, sabiendo que las longitudes de sus lados
son tres números consecutivos.
Respuestas a la pregunta
Contestado por
4
Según he leído en definiciones, decir "recíproco" es como decir "inverso" e invertir cualquier número es colocarlo como denominador de una fracción cuyo numerador siempre es 1.
Si llamo "x" a ese número, su recíproco (o inverso) será 1/x ... y la ecuación a plantear
x + (1/x) = 26/5 ---> 5x² + 5 = 26x ----> 5x² -26x +5 = 0 ... usando la fórmula general
________
–b ± √ b² – 4ac
x = ▬▬▬▬▬▬▬
2a
x₁ = (26+24)/10 = 5
x₂ = (26-24)/10 = 2/10 = 1/5
---------------------------------------------------------------
El cuadrado de un número "x" será x²
El triple de ese mismo número será 3x ... entonces...
x² + 3x = 10 ----> x² +3x -10 = 0
x₁ = (-3 +49) / 2 = 23
x₂ = (-3 -49) / 2 = -26
Son dos soluciones. Esos dos números cumplen la condición porque el enunciado no nos condiciona qué tipo de número es. Sin embargo, fíjate que en el primer ejercicio sí que decía "entero positivo" y aquí no. Por tanto, valen los dos como solución.
-----------------------------------------------------------------------
Si los lados son consecutivos, tendremos estas medidas:
Cateto menor: x
Cateto mayor: x+1
Hipotenusa: x+2
Usando el teorema de Pitágoras...
H² = C²+c² ... sustituyendo... (x+2)² = (x+1)² + x² ... desarrollando esto....
x² +4x +4 = x² +2x +1 +x² -----> x² -2x -3 = 0 ... de nuevo la fórmula general...
x₁ = (2+4)/2 = 3 de donde deducimos los siguientes lados = 4 y 5
x₂ = (2-4) = -1 (se desecha por tratarse de medidas de lados ya que estas no pueden ser negativas)
Saludos.
Si llamo "x" a ese número, su recíproco (o inverso) será 1/x ... y la ecuación a plantear
x + (1/x) = 26/5 ---> 5x² + 5 = 26x ----> 5x² -26x +5 = 0 ... usando la fórmula general
________
–b ± √ b² – 4ac
x = ▬▬▬▬▬▬▬
2a
x₁ = (26+24)/10 = 5
x₂ = (26-24)/10 = 2/10 = 1/5
---------------------------------------------------------------
El cuadrado de un número "x" será x²
El triple de ese mismo número será 3x ... entonces...
x² + 3x = 10 ----> x² +3x -10 = 0
x₁ = (-3 +49) / 2 = 23
x₂ = (-3 -49) / 2 = -26
Son dos soluciones. Esos dos números cumplen la condición porque el enunciado no nos condiciona qué tipo de número es. Sin embargo, fíjate que en el primer ejercicio sí que decía "entero positivo" y aquí no. Por tanto, valen los dos como solución.
-----------------------------------------------------------------------
Si los lados son consecutivos, tendremos estas medidas:
Cateto menor: x
Cateto mayor: x+1
Hipotenusa: x+2
Usando el teorema de Pitágoras...
H² = C²+c² ... sustituyendo... (x+2)² = (x+1)² + x² ... desarrollando esto....
x² +4x +4 = x² +2x +1 +x² -----> x² -2x -3 = 0 ... de nuevo la fórmula general...
x₁ = (2+4)/2 = 3 de donde deducimos los siguientes lados = 4 y 5
x₂ = (2-4) = -1 (se desecha por tratarse de medidas de lados ya que estas no pueden ser negativas)
Saludos.
Otras preguntas
Derecho ,
hace 8 meses
Matemáticas,
hace 8 meses
Inglés,
hace 8 meses
Física,
hace 1 año
Ciencias Sociales,
hace 1 año
Biología,
hace 1 año