Matemáticas, pregunta formulada por luisnp9, hace 1 año

[1+((a-x)/(a+x))^2 ]÷[1-((a-x)/(a+x))^2 ]

Respuestas a la pregunta

Contestado por agusdjpoet47
1
\frac{\left[1+\left(\frac{\left(a-x\right)}{\left(a+x\right)}\right)^2\right]}{\left[1-\left(\frac{\left(a-x\right)}{\left(a+x\right)}\right)^2\right]}
\mathrm{Aplicar\:las\:leyes\:de\:los\:exponentes}:\quad \left(\frac{a}{b}\right)^c=\frac{a^c}{b^c}
=\frac{1+\frac{\left(a-x\right)^2}{\left(a+x\right)^2}}{1-\frac{\left(a-x\right)^2}{\left(a+x\right)^2}}
\mathrm{Simplificar}\:1+\frac{\left(a-x\right)^2}{\left(a+x\right)^2}\:\mathrm{en\:una\:fraccion}:
\mathrm{Encontrar\:el\:minimo\:comun\:denominador\:para}\:\frac{1}{1}+\frac{\left(a-x\right)^2}{\left(a+x\right)^2}:\quad \left(a+x\right)^2
=\frac{\left(a+x\right)^2+\left(a-x\right)^2}{\left(a+x\right)^2}
= \frac{a^2+2ax+x^{2} +a^{2}-2ax+x^2 }{\left(a+x\right)^2}
=\frac{2a^2+2x^2}{\left(a+x\right)^2}

= \frac{\frac{2a^2+2x^2}{\left(a+x\right)^2}}{1-\frac{\left(a-x\right)^2}{\left(a+x\right)^2}}
\mathrm{Simplificar}\:1-\frac{\left(a-x\right)^2}{\left(a+x\right)^2}\:\mathrm{en\:una\:fraccion}:
\mathrm{Encontrar\:el\:minimo\:comun\:denominador\:para}\:\frac{1}{1}-\frac{\left(a-x\right)^2}{\left(a+x\right)^2}:\quad \left(a+x\right)^2
=\frac{\left(a+x\right)^2-\left(a-x\right)^2}{\left(a+x\right)^2}
=\frac{4ax}{\left(a+x\right)^2}

=\frac{\frac{2a^2+2x^2}{\left(a+x\right)^2}}{\frac{4ax}{\left(a+x\right)^2}}
\mathrm{Dividir\:fracciones}:\quad \frac{\frac{a}{b}}{\frac{c}{d}}=\frac{a\cdot \:d}{b\cdot \:c}
=\frac{\left(2a^2+2x^2\right)\left(a+x\right)^2}{\left(a+x\right)^2\cdot \:4ax}
\mathrm{Eliminar\:los\:terminos\:comunes:}\:\left(a+x\right)^2
=\frac{2a^2+2x^2}{4ax}
\mathrm{Factorizar\:el\:termino\:comun\:}2:
=\frac{2\left(a^2+x^2\right)}{4ax}
\mathrm{Eliminar\:los\:terminos\:comunes:}\:2
=\frac{a^2+x^2}{2ax}

luisnp9: Tu explicación es excelente gracias
agusdjpoet47: no es nada amigo saludos :)
Otras preguntas