(1-2y )/(3-y ) + y = 1/(y+2 ); -2
Respuestas a la pregunta
Respuesta: y = [ 1 + √21] / 2 ó y = [ 1 - √21] / 2
Explicación paso a paso:
(1-2y )/(3-y ) + y = 1/(y+2 ); -2 . Al efectuar operaciones en ambos miembros, se obtiene:
[(1 - 2y)/(3-y)] + [ y. (3-y) / (3-y)] = [ 1 /(y+2)] - [ 2(y+2) / (y+2) ]
{[(1 - 2y)/(3-y)] + [ y. (3-y) ]} / (3-y) = {[ 1 /(y+2)] - [ 2(y+2) ]} / (y+2)
[3 - y - 6y + 2y² + 3y - y² ] / (3-y) = [ 1 - 2y - 4 ] / (y+2)
[ y² - 4y + 3 ] / (3-y) = (-3 - 2y) /(y+2)
Entonces:
(y+2)(y² - 4y + 3) = (3 - y)(-3 - 2y)
(y+2) (y-3)(y-1) = -(y-3)(-3 - 2y)
(y+2)(y-1) = -(-3 - 2y)
(y+2)(y-1) = 3+2y
y(y-1) + 2(y-1) = 3 + 2y
y² - y + 2y - 2 = 3 + 2y
y² - y - 2 - 3 = 0
y² - y - 5 = 0
Aquí a = 1, b = -1 y c= -5.
El discriminante es D = b² - 4ac = (-1)² - 4 . (1)(-5) = 21
Por tanto:
y = (-b + √D) / 2a ó y = (-b + √D) / 2a
y = [ -(-1) + √21) / 2 ó y = [ -(-1) - √21) / 2
y = [ 1 + √21] / 2 ó y = [ 1 - √21] / 2